CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Constructing (Almost) Rigid Rings and a UFD Having Infinitely Generated Derksen and Makar-Limanov Invariants

  Published:2009-12-04
 Printed: Mar 2010
  • David Finston
  • Stefan Maubach
Format:   HTML   LaTeX   MathJax  

Abstract

An example is given of a UFD which has an infinitely generated Derksen invariant. The ring is "almost rigid" meaning that the Derksen invariant is equal to the Makar-Limanov invariant. Techniques to show that a ring is (almost) rigid are discussed, among which is a generalization of Mason's abc-theorem.
MSC Classifications: 14R20, 13A50, 13N15 show english descriptions Group actions on affine varieties [See also 13A50, 14L30]
Actions of groups on commutative rings; invariant theory [See also 14L24]
Derivations
14R20 - Group actions on affine varieties [See also 13A50, 14L30]
13A50 - Actions of groups on commutative rings; invariant theory [See also 14L24]
13N15 - Derivations
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/