CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

A Comment on ``$\mathfrak{p} < \mathfrak{t}$''

  Published:2009-06-01
 Printed: Jun 2009
  • Saharon Shelah
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

Dealing with the cardinal invariants ${\mathfrak p}$ and ${\mathfrak t}$ of the continuum, we prove that ${\mathfrak m}={\mathfrak p} = \aleph_2\ \Rightarrow\ {\mathfrak t} =\aleph_2$. In other words, if ${\bf MA}_{\aleph_1}$ (or a weak version of this) holds, then (of course $\aleph_2\le {\mathfrak p}\le {\mathfrak t}$ and) ${\mathfrak p}=\aleph_2\ \Rightarrow\ {\mathfrak p}={\mathfrak t}$. The proof is based on a criterion for ${\mathfrak p}<{\mathfrak t}$.
MSC Classifications: 03E17, 03E05, 03E50 show english descriptions Cardinal characteristics of the continuum
Other combinatorial set theory
Continuum hypothesis and Martin's axiom [See also 03E57]
03E17 - Cardinal characteristics of the continuum
03E05 - Other combinatorial set theory
03E50 - Continuum hypothesis and Martin's axiom [See also 03E57]
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/