Hostname: page-component-7c8c6479df-995ml Total loading time: 0 Render date: 2024-03-29T06:48:36.843Z Has data issue: false hasContentIssue false

On the Rational Points of the Curve f (X,Y)q = h(X)g(X,Y)

Published online by Cambridge University Press:  20 November 2018

Dimitrios Poulakis*
Affiliation:
Aristotle University of Thessaloniki, Department of Mathematics, 54124 Thessaloniki, Greece e-mail: poulakis@math.auth.gr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $\text{q}\,\text{=}\,\text{2,}\,\text{3}$ and $f\left( X,\,Y \right)$, $g\left( X,\,Y \right)$, $h\left( X \right)$ be polynomials with integer coefficients. In this paper we deal with the curve $f{{\left( X,\,Y \right)}^{\text{q}}}\,=\,h\left( X \right)g\left( X,\,Y \right)$ , and we show that under some favourable conditions it is possible to determine all of its rational points.

Keywords

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2009

References

[1] Bombieri, E., The Mordell conjecture revisited. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17(1990), no. 4, 615640.Google Scholar
[2] Bruin, N., On Generalised Fermat Equations. PhD Dissertation, Leiden 1999. http://www.cecm.sfu.ca/_nbruin/oldindex.html Google Scholar
[3] Bruin, N. and Flynn, E. V., Towers of 2-covers of hyperelliptic curves. Trans. Amer.Math. Soc. 357(2005), no. 11, 43294347.Google Scholar
[4] Chabauty, C., Sur les points rationnels des variétés algébriques dont l’irrégularité est supérieure à la dimension. C. R. Acad. Sci. Paris 212(1941), 10221024.Google Scholar
[5] Chevalley, C. and Weil, A., Un théorème d’ arithmétique sur les courbes algébriques. C. R. Acad. Sci. Paris 195(1932), 570572.Google Scholar
[6] Coleman, R. F., Effective Chabauty. Duke Math. J. 52(1985), no. 3, 765770.Google Scholar
[7] Coombes, K. R. and Grant, D. R., On heterogeneous spaces. J. London Math. Soc. (2) 40(1989), no. 3, 385397.Google Scholar
[8] Dem’janenko, V., Rational points of a class of algebraic curves Amer. Math. Soc. Trasl. 66, American Mathematical Society, Providence, RI, 1968, pp. 246272.Google Scholar
[9] Duquesne, S., Points rationnels et méthode de Chabauty elliptique. J. Théor. Nombres Bordeaux 15(2003), no. 1, 99113.Google Scholar
[10] Faltings, G., Endlichkeitssäatze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(1983), no. 3, 349366.Google Scholar
[11] Flynn, E. V., A flexible method for applying Chabauty's theorem. Compositio Math. 105(1997), no. 1, 7994.Google Scholar
[12] Flynn, E. V. and Wetherell, J. L., Finding rational points on bielliptic genus 2 curves. Manuscripta Math. 100(1999), no. 4, 519533.Google Scholar
[13] Flynn, E. V. and Wetherell, J. L., Covering collections and a challenge problem of Serre. Acta Arith. 98(2001), no. 2, 197205.Google Scholar
[14] Flynn, E. V. and Redmond, J., Application of covering techniques to families of curves. J. Number Theory 101(2003), no. 2, 376397.Google Scholar
[15] Flynn, E. V., Poonen, B., and Schaefer, E. F., Cycles of quadratic polynomials and rational points on a genus-2 curve. Duke Math. J. 90(1997), no. 3, 435463.Google Scholar
[16] Kulesz, L., Application de la méthode de Dem’janenko–Manin à certaines familles de courbes de genre 2 et 3. J. Number Theory 76(1999), no. 1, 130146.Google Scholar
[17] Lang, S., Algebraic Number Theory. Addison-Wesley, Reading, Mass., 1970.Google Scholar
[18] Lang, S., Fundamentals of Diophantine Geometry. Springer-Verlag, New York, 1983.Google Scholar
[19] Malliavin, M. P., Algèbre commutative. Applications en géomtrie et théorie des nombres. Masson, Paris, 1985.Google Scholar
[20] Manin, Y., The p-torsion of elliptic curves is uniformly bounded. Izv. Akad. Nauk SSSR Ser. Mat. 33(1969), 459465.Google Scholar
[21] Mordell, L. J., Diophantine Equations. Pure and Applied Mathematics 30, Academic Press, New York, 1969.Google Scholar
[22] Poonen, B., Schaefer, E. F., and Stoll, M., Twists of X(7) and primitive solutions to x 2 + y 3 = z 7 . http://math.berkeley.edu/_poonen/papers/pss.pdf.Google Scholar
[23] Poulakis, D., Solutions entières de l’équation f(X, Y)a = p(X)g(X, Y). C. R. Acad. Sci. Paris Sér. I Math. 315(1992), no. 9, 963968.Google Scholar
[24] Schaefer, E. F. and Wetherell, J. L., Computing the Selmer group of an isogeny between abelian varieties using a further isogeny to a Jacobian. J. Number Theory 115(2005), no. 1, 158175.Google Scholar
[25] Silverman, J. H., The arithmetic of elliptic curves. Graduate Texts in Mathematics 106, Springer-Verlag, New York, 1986.Google Scholar
[26] Silverman, J. H., Rational points on certain families of curves of genus at least 2. Proc. London Math. Soc. (3) 55(1987), no. 3, 465481.Google Scholar
[27] Vojta, P., Siegel's theorem in compact case. Ann. of Math. (2) 133(1991), no. 3, 509548.Google Scholar
[28] Wetherell, J. L., Bounding the Number of Rational Points on Certain Curves of Hight Rank, PhD Dissertation, University of California at Berkeley, 1997.Google Scholar