CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

A Result in Surgery Theory

  Published:2008-12-01
 Printed: Dec 2008
  • Alberto Cavicchioli
  • Fulvia Spaggiari
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

We study the topological $4$-dimensional surgery problem for a closed connected orientable topological $4$-manifold $X$ with vanishing second homotopy and $\pi_1(X)\cong A * F(r)$, where $A$ has one end and $F(r)$ is the free group of rank $r\ge 1$. Our result is related to a theorem of Krushkal and Lee, and depends on the validity of the Novikov conjecture for such fundamental groups.
Keywords: four-manifolds, homotopy type, obstruction theory, homology with local coefficients, surgery, normal invariant, assembly map four-manifolds, homotopy type, obstruction theory, homology with local coefficients, surgery, normal invariant, assembly map
MSC Classifications: 57N65, 57R67, 57Q10 show english descriptions Algebraic topology of manifolds
Surgery obstructions, Wall groups [See also 19J25]
Simple homotopy type, Whitehead torsion, Reidemeister-Franz torsion, etc. [See also 19B28]
57N65 - Algebraic topology of manifolds
57R67 - Surgery obstructions, Wall groups [See also 19J25]
57Q10 - Simple homotopy type, Whitehead torsion, Reidemeister-Franz torsion, etc. [See also 19B28]
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/