CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

On Primitive Ideals in Graded Rings

  Published:2008-09-01
 Printed: Sep 2008
  • Agata Smoktunowicz
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

Let $R=\bigoplus_{i=1}^{\infty}R_{i}$ be a graded nil ring. It is shown that primitive ideals in $R$ are homogeneous. Let $A=\bigoplus_{i=1}^{\infty}A_{i}$ be a graded non-PI just-infinite dimensional algebra and let $I$ be a prime ideal in $A$. It is shown that either $I=\{0\}$ or $I=A$. Moreover, $A$ is either primitive or Jacobson radical.
MSC Classifications: 16D60, 16W50 show english descriptions Simple and semisimple modules, primitive rings and ideals
Graded rings and modules
16D60 - Simple and semisimple modules, primitive rings and ideals
16W50 - Graded rings and modules
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/