CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Cohomological Dimension and Schreier's Formula in Galois Cohomology

  Published:2007-12-01
 Printed: Dec 2007
  • John Labute
  • Nicole Lemire
  • Ján Mináč
  • John Swallow
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

Let $p$ be a prime and $F$ a field containing a primitive $p$-th root of unity. Then for $n\in \N$, the cohomological dimension of the maximal pro-$p$-quotient $G$ of the absolute Galois group of $F$ is at most $n$ if and only if the corestriction maps $H^n(H,\Fp) \to H^n(G,\Fp)$ are surjective for all open subgroups $H$ of index $p$. Using this result, we generalize Schreier's formula for $\dim_{\Fp} H^1(H,\Fp)$ to $\dim_{\Fp} H^n(H,\Fp)$.
Keywords: cohomological dimension, Schreier's formula, Galois theory, $p$-extensions, pro-$p$-groups cohomological dimension, Schreier's formula, Galois theory, $p$-extensions, pro-$p$-groups
MSC Classifications: 12G05, 12G10 show english descriptions Galois cohomology [See also 14F22, 16Hxx, 16K50]
Cohomological dimension
12G05 - Galois cohomology [See also 14F22, 16Hxx, 16K50]
12G10 - Cohomological dimension
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/