CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

$p$-Radial Exceptional Sets and Conformal Mappings

  Published:2007-12-01
 Printed: Dec 2007
  • Piotr Kot
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

For $p>0$ and for a given set $E$ of type $G_{\delta}$ in the boundary of the unit disc $\partial\mathbb D$ we construct a holomorphic function $f\in\mathbb O(\mathbb D)$ such that \[ \int_{\mathbb D\setminus[0,1]E}|ft|^{p}\,d\mathfrak{L}^{2}<\infty\] and\[ E=E^{p}(f)=\Bigl\{ z\in\partial\mathbb D:\int_{0}^{1}|f(tz)|^{p}\,dt=\infty\Bigr\} .\] In particular if a set $E$ has a measure equal to zero, then a function $f$ is constructed as integrable with power $p$ on the unit disc $\mathbb D$.
Keywords: boundary behaviour of holomorphic functions, exceptional sets boundary behaviour of holomorphic functions, exceptional sets
MSC Classifications: 30B30, 30E25 show english descriptions Boundary behavior of power series, over-convergence
Boundary value problems [See also 45Exx]
30B30 - Boundary behavior of power series, over-convergence
30E25 - Boundary value problems [See also 45Exx]
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/