Canadian Mathematical Society
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Abstract view

Elliptic $K3$ Surfaces with Geometric Mordell--Weil Rank $15$

 Printed: Jun 2007
  • Remke Kloosterman
Format:   HTML   LaTeX   MathJax   PDF   PostScript  


We prove that the elliptic surface $y^2=x^3+2(t^8+14t^4+1)x+4t^2(t^8+6t^4+1)$ has geometric Mordell--Weil rank $15$. This completes a list of Kuwata, who gave explicit examples of elliptic $K3$-surfaces with geometric Mordell--Weil ranks $0,1,\dots, 14, 16, 17, 18$.
MSC Classifications: 14J27, 14J28, 11G05 show english descriptions Elliptic surfaces
$K3$ surfaces and Enriques surfaces
Elliptic curves over global fields [See also 14H52]
14J27 - Elliptic surfaces
14J28 - $K3$ surfaces and Enriques surfaces
11G05 - Elliptic curves over global fields [See also 14H52]

© Canadian Mathematical Society, 2014 :