CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Inner $E_0$-Semigroups on Infinite Factors

  Published:2006-09-01
 Printed: Sep 2006
  • Remus Floricel
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

This paper is concerned with the structure of inner $E_0$-semigroups. We show that any inner $E_0$-semigroup acting on an infinite factor $M$ is completely determined by a continuous tensor product system of Hilbert spaces in $M$ and that the product system associated with an inner $E_0$-semigroup is a complete cocycle conjugacy invariant.
Keywords: von Neumann algebras, semigroups of endomorphisms, product systems, cocycle conjugacy von Neumann algebras, semigroups of endomorphisms, product systems, cocycle conjugacy
MSC Classifications: 46L40, 46L55 show english descriptions Automorphisms
Noncommutative dynamical systems [See also 28Dxx, 37Kxx, 37Lxx, 54H20]
46L40 - Automorphisms
46L55 - Noncommutative dynamical systems [See also 28Dxx, 37Kxx, 37Lxx, 54H20]
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/