CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

On a Theorem of Kawamoto on Normal Bases of Rings of Integers, II

  Published:2005-12-01
 Printed: Dec 2005
  • Humio Ichimura
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

Let $m=p^e$ be a power of a prime number $p$. We say that a number field $F$ satisfies the property $(H_m')$ when for any $a \in F^{\times}$, the cyclic extension $F(\z_m, a^{1/m})/F(\z_m)$ has a normal $p$-integral basis. We prove that $F$ satisfies $(H_m')$ if and only if the natural homomorphism $Cl_F' \to Cl_K'$ is trivial. Here $K=F(\zeta_m)$, and $Cl_F'$ denotes the ideal class group of $F$ with respect to the $p$-integer ring of $F$.
MSC Classifications: 11R33 show english descriptions Integral representations related to algebraic numbers; Galois module structure of rings of integers [See also 20C10] 11R33 - Integral representations related to algebraic numbers; Galois module structure of rings of integers [See also 20C10]
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/