CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Uniform Estimates of Ultraspherical Polynomials of Large Order

  Published:2005-09-01
 Printed: Sep 2005
  • Laura De Carli
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

In this paper we prove the sharp inequality $$ |P_n^{(s)}(x)|\leq P_n^{(s)}(1)\bigl(|x|^n +\frac{n-1}{2 s+1}(1-|x|^n)\bigr),$$ where $P_n^{(s)}(x)$ is the classical ultraspherical polynomial of degree $n$ and order $s\ge n\frac{1+\sqrt 5}{4}$. This inequality can be refined in $[0,z_n^s]$ and $[z_n^s,1]$, where $z_n^s$ denotes the largest zero of $P_n^{(s)}(x)$.
MSC Classifications: 42C05, 33C47 show english descriptions Orthogonal functions and polynomials, general theory [See also 33C45, 33C50, 33D45]
Other special orthogonal polynomials and functions
42C05 - Orthogonal functions and polynomials, general theory [See also 33C45, 33C50, 33D45]
33C47 - Other special orthogonal polynomials and functions
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/