CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

$C^*$-Algebras and Factorization Through Diagonal Operators

  Published:2004-12-01
 Printed: Dec 2004
  • Narcisse Randrianantoanina
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

Let $\cal A$ be a $C^*$-algebra and $E$ be a Banach space with the Radon-Nikodym property. We prove that if $j$ is an embedding of $E$ into an injective Banach space then for every absolutely summing operator $T:\mathcal{A}\longrightarrow E$, the composition $j \circ T$ factors through a diagonal operator from $l^{2}$ into $l^{1}$. In particular, $T$ factors through a Banach space with the Schur property. Similarly, we prove that for $2
Keywords: $C^*$-algebras, summing operators, diagonal operators, Radon-Nikodym property $C^*$-algebras, summing operators, diagonal operators, Radon-Nikodym property
MSC Classifications: 46L50, 47D15 show english descriptions unknown classification 46L50
unknown classification 47D15
46L50 - unknown classification 46L50
47D15 - unknown classification 47D15
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/