CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Existence of Leray's Self-Similar Solutions of the Navier-Stokes Equations In $\mathcal{D}\subset\mathbb{R}^3$

  Published:2004-03-01
 Printed: Mar 2004
  • Xinyu He
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

Leray's self-similar solution of the Navier-Stokes equations is defined by $$ u(x,t) = U(y)/\sqrt{2\sigma (t^*-t)}, $$ where $y = x/\sqrt{2\sigma (t^*-t)}$, $\sigma>0$. Consider the equation for $U(y)$ in a smooth bounded domain $\mathcal{D}$ of $\mathbb{R}^3$ with non-zero boundary condition: \begin{gather*} -\nu \bigtriangleup U + \sigma U +\sigma y \cdot \nabla U + U\cdot \nabla U + \nabla P = 0,\quad y \in \mathcal{D}, \\ \nabla \cdot U = 0, \quad y \in \mathcal{D}, \\ U = \mathcal{G}(y), \quad y \in \partial \mathcal{D}. \end{gather*} We prove an existence theorem for the Dirichlet problem in Sobolev space $W^{1,2} (\mathcal{D})$. This implies the local existence of a self-similar solution of the Navier-Stokes equations which blows up at $t=t^*$ with $t^* < +\infty$, provided the function $\mathcal{G}(y)$ is permissible.
MSC Classifications: 76D05, 76B03 show english descriptions Navier-Stokes equations [See also 35Q30]
Existence, uniqueness, and regularity theory [See also 35Q35]
76D05 - Navier-Stokes equations [See also 35Q30]
76B03 - Existence, uniqueness, and regularity theory [See also 35Q35]
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/