Canadian Mathematical Society
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Abstract view

On Density Conditions for Interpolation in the Ball

 Printed: Dec 2003
  • Nicolas Marco
  • Xavier Massaneda
Format:   HTML   LaTeX   MathJax   PDF   PostScript  


In this paper we study interpolating sequences for two related spaces of holomorphic functions in the unit ball of $\C^n$, $n>1$. We first give density conditions for a sequence to be interpolating for the class $A^{-\infty}$ of holomorphic functions with polynomial growth. The sufficient condition is formally identical to the characterizing condition in dimension $1$, whereas the necessary one goes along the lines of the results given by Li and Taylor for some spaces of entire functions. In the second part of the paper we show that a density condition, which for $n=1$ coincides with the characterizing condition given by Seip, is sufficient for interpolation in the (weighted) Bergman space.
MSC Classifications: 32A36, 32A38, 30E05 show english descriptions Bergman spaces
Algebras of holomorphic functions [See also 30H05, 46J10, 46J15]
Moment problems, interpolation problems
32A36 - Bergman spaces
32A38 - Algebras of holomorphic functions [See also 30H05, 46J10, 46J15]
30E05 - Moment problems, interpolation problems

© Canadian Mathematical Society, 2014 :