CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

Gauss and Eisenstein Sums of Order Twelve

  Published:2003-09-01
 Printed: Sep 2003
  • S. Gurak
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

Let $q=p^{r}$ with $p$ an odd prime, and $\mathbf{F}_{q}$ denote the finite field of $q$ elements. Let $\Tr\colon\mathbf{F}_{q} \to\mathbf{F}_{p} $ be the usual trace map and set $\zeta_{p} =\exp(2\pi i/p)$. For any positive integer $e$, define the (modified) Gauss sum $g_{r}(e)$ by $$ g_{r}(e) =\sum_{x\in \mathbf{F}_{q}}\zeta_{p}^{\Tr x^{e}} $$ Recently, Evans gave an elegant determination of $g_{1}(12)$ in terms of $g_{1}(3)$, $g_{1}(4)$ and $g_{1}(6)$ which resolved a sign ambiguity present in a previous evaluation. Here I generalize Evans' result to give a complete determination of the sum $g_{r}(12)$.
MSC Classifications: 11L05, 11T24 show english descriptions Gauss and Kloosterman sums; generalizations
Other character sums and Gauss sums
11L05 - Gauss and Kloosterman sums; generalizations
11T24 - Other character sums and Gauss sums
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/