Canadian Mathematical Society
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Abstract view

Extrapolation of $L^p$ Data from a Modular Inequality

Open Access article
 Printed: Mar 2002
  • Steven Bloom
  • Ron Kerman
Format:   HTML   LaTeX   MathJax   PDF   PostScript  


If an operator $T$ satisfies a modular inequality on a rearrangement invariant space $L^\rho (\Omega,\mu)$, and if $p$ is strictly between the indices of the space, then the Lebesgue inequality $\int |Tf|^p \leq C \int |f|^p$ holds. This extrapolation result is a partial converse to the usual interpolation results. A modular inequality for Orlicz spaces takes the form $\int \Phi (|Tf|) \leq \int \Phi (C |f|)$, and here, one can extrapolate to the (finite) indices $i(\Phi)$ and $I(\Phi)$ as well.
MSC Classifications: 42B25 show english descriptions Maximal functions, Littlewood-Paley theory 42B25 - Maximal functions, Littlewood-Paley theory

© Canadian Mathematical Society, 2015 :