Canadian Mathematical Society
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Abstract view

Obstructions to $\mathcal{Z}$-Stability for Unital Simple $C^*$-Algebras

 Printed: Dec 2000
  • Guihua Gong
  • Xinhui Jiang
  • Hongbing Su
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  


Let $\cZ$ be the unital simple nuclear infinite dimensional $C^*$-algebra which has the same Elliott invariant as $\bbC$, introduced in \cite{JS}. A $C^*$-algebra is called $\cZ$-stable if $A \cong A \otimes \cZ$. In this note we give some necessary conditions for a unital simple $C^*$-algebra to be $\cZ$-stable.
Keywords: simple $C^*$-algebra, $\mathcal{Z}$-stability, weak (un)perforation in $K_0$ group, property $\Gamma$, finiteness simple $C^*$-algebra, $\mathcal{Z}$-stability, weak (un)perforation in $K_0$ group, property $\Gamma$, finiteness
MSC Classifications: 46L05 show english descriptions General theory of $C^*$-algebras 46L05 - General theory of $C^*$-algebras

© Canadian Mathematical Society, 2014 :