Canadian Mathematical Society
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Abstract view

Multilinear Proofs for Convolution Estimates for Degenerate Plane Curves

Open Access article
 Printed: Mar 2000
  • Jong-Guk Bak
Format:   HTML   LaTeX   MathJax   PDF   PostScript  


Suppose that $\g \in C^2\bigl([0,\infty)\bigr)$ is a real-valued function such that $\g(0)=\g'(0)=0$, and $\g''(t)\approx t^{m-2}$, for some integer $m\geq 2$. Let $\Gamma (t)=\bigl(t,\g(t)\bigr)$, $t>0$, be a curve in the plane, and let $d \lambda =dt$ be a measure on this curve. For a function $f$ on $\bR^2$, let $$ Tf(x)=(\lambda *f)(x)=\int_0^{\infty} f\bigl(x-\Gamma(t)\bigr)\,dt, \quad x\in\bR^2 . $$ An elementary proof is given for the optimal $L^p$-$L^q$ mapping properties of $T$.
MSC Classifications: 42A85, 42B15 show english descriptions Convolution, factorization
42A85 - Convolution, factorization
42B15 - Multipliers

© Canadian Mathematical Society, 2015 :