CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

A Remark On the Moser-Aubin Inequality For Axially Symmetric Functions On the Sphere

  Published:1999-12-01
 Printed: Dec 1999
  • Alexander R. Pruss
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

Let $\scr S_r$ be the collection of all axially symmetric functions $f$ in the Sobolev space $H^1(\Sph^2)$ such that $\int_{\Sph^2} x_ie^{2f(\mathbf{x})} \, d\omega(\mathbf{x})$ vanishes for $i=1,2,3$. We prove that $$ \inf_{f\in \scr S_r} \frac12 \int_{\Sph^2} |\nabla f|^2 \, d\omega + 2\int_{\Sph^2} f \, d\omega- \log \int_{\Sph^2} e^{2f} \, d\omega > -\oo, $$ and that this infimum is attained. This complements recent work of Feldman, Froese, Ghoussoub and Gui on a conjecture of Chang and Yang concerning the Moser-Aubin inequality.
Keywords: Moser inequality, borderline Sobolev inequalities, axially symmetric functions Moser inequality, borderline Sobolev inequalities, axially symmetric functions
MSC Classifications: 26D15, 58G30 show english descriptions Inequalities for sums, series and integrals
unknown classification 58G30
26D15 - Inequalities for sums, series and integrals
58G30 - unknown classification 58G30
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/