CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

A Generalized Characterization of Commutators of Parabolic Singular Integrals

  Published:1999-12-01
 Printed: Dec 1999
  • Steve Hofmann
  • Xinwei Li
  • Dachun Yang
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

Let $x=(x_1, \dots, x_n)\in\rz$ and $\dz_\lz x=(\lz^{\az_1}x_1, \dots,\lz^{\az_n}x_n)$, where $\lz>0$ and $1\le \az_1\le\cdots \le\az_n$. Denote $|\az|=\az_1+\cdots+\az_n$. We characterize those functions $A(x)$ for which the parabolic Calder\'on commutator $$ T_{A}f(x)\equiv \pv \int_{\mathbb{R}^n} K(x-y)[A(x)-A(y)]f(y)\,dy $$ is bounded on $L^2(\mathbb{R}^n)$, where $K(\dz_\lz x)=\lz^{-|\az|-1}K(x)$, $K$ is smooth away from the origin and satisfies a certain cancellation property.
Keywords: parabolic singular integral, commutator, parabolic $\BMO$ sobolev space, homogeneous space, T1-theorem, symbol parabolic singular integral, commutator, parabolic $\BMO$ sobolev space, homogeneous space, T1-theorem, symbol
MSC Classifications: 42B20 show english descriptions Singular and oscillatory integrals (Calderon-Zygmund, etc.) 42B20 - Singular and oscillatory integrals (Calderon-Zygmund, etc.)
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/