Canadian Mathematical Society
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Abstract view

Smooth Maps and Real Algebraic Morphisms

 Printed: Dec 1999
  • J. Bochnak
  • W. Kucharz
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  


Let $X$ be a compact nonsingular real algebraic variety and let $Y$ be either the blowup of $\mathbb{P}^n(\mathbb{R})$ along a linear subspace or a nonsingular hypersurface of $\mathbb{P}^m(\mathbb{R}) \times \mathbb{P}^n(\mathbb{R})$ of bidegree $(1,1)$. It is proved that a $\mathcal{C}^\infty$ map $f \colon X \rightarrow Y$ can be approximated by regular maps if and only if $f^* \bigl( H^1(Y, \mathbb{Z}/2) \bigr) \subseteq H^1_{\alg} (X,\mathbb{Z}/2)$, where $H^1_{\alg} (X,\mathbb{Z}/2)$ is the subgroup of $H^1 (X, \mathbb{Z}/2)$ generated by the cohomology classes of algebraic hypersurfaces in $X$. This follows from another result on maps into generalized flag varieties.
MSC Classifications: 14P05, 14P25 show english descriptions Real algebraic sets [See also 12Dxx, 13P30]
Topology of real algebraic varieties
14P05 - Real algebraic sets [See also 12Dxx, 13P30]
14P25 - Topology of real algebraic varieties

© Canadian Mathematical Society, 2014 :