Abstract view
On Analytic Functions of Bergman $\BMO$ in the Ball


Published:19990301
Printed: Mar 1999
Features coming soon:
Citations
(via CrossRef)
Tools:
Search Google Scholar:
Abstract
Let $B = B_n$ be the open unit ball of $\bbd C^n$ with
volume measure $\nu$, $U = B_1$ and ${\cal B}$ be the Bloch space on
$U$. ${\cal A}^{2, \alpha} (B)$, $1 \leq \alpha < \infty$, is defined
as the set of holomorphic $f\colon B \rightarrow \bbd C$ for which
$$
\int_B \vert f(z) \vert^2 \left( \frac 1{\vert z\vert}
\log \frac 1{1  \vert z\vert } \right)^{\alpha}
\frac {d\nu (z)}{1\vert z\vert} < \infty
$$
if $0 < \alpha <\infty$ and ${\cal A}^{2, 1} (B) = H^2(B)$, the Hardy
space. Our objective of this note is to characterize, in terms of
the Bergman distance, those holomorphic $f\colon B \rightarrow U$ for
which the composition operator $C_f \colon {\cal B} \rightarrow
{\cal A}^{2, \alpha}(B)$ defined by $C_f (g) = g\circ f$,
$g \in {\cal B}$, is bounded. Our result has a corollary that
characterize the set of analytic functions of bounded mean
oscillation with respect to the Bergman metric.