Abstract view
On the Set of Common Differences in van der Waerden's Theorem on Arithmetic Progressions


Published:19990301
Printed: Mar 1999
Tom C. Brown
Ronald L. Graham
Bruce M. Landman
Abstract
Analogues of van der Waerden's theorem on arithmetic progressions
are considered where the family of all arithmetic progressions,
$\AP$, is replaced by some subfamily of $\AP$. Specifically, we
want to know for which sets $A$, of positive integers, the
following statement holds: for all positive integers $r$ and $k$,
there exists a positive integer $n= w'(k,r)$ such that for every
$r$coloring of $[1,n]$ there exists a monochromatic $k$term
arithmetic progression whose common difference belongs to $A$. We
will call any subset of the positive integers that has the above
property {\em large}. A set having this property for a specific
fixed $r$ will be called {\em $r$large}. We give some necessary
conditions for a set to be large, including the fact that every
large set must contain an infinite number of multiples of each
positive integer. Also, no large set $\{a_{n}: n=1,2,\dots\}$ can
have $\liminf\limits_{n \rightarrow \infty} \frac{a_{n+1}}{a_{n}} > 1$.
Sufficient conditions for a set to be large are also given. We
show that any set containing $n$cubes for arbitrarily large $n$,
is a large set. Results involving the connection between the
notions of ``large'' and ``2large'' are given. Several open
questions and a conjecture are presented.