CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Publications        
Abstract view

$L^p$-boundedness of a singular integral operator

  Published:1998-12-01
 Printed: Dec 1998
  • Abdelnaser J. Al-Hasan
  • Dashan Fan
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

Let $b(t)$ be an $L^\infty$ function on $\bR$, $\Omega (\,y')$ be an $H^1$ function on the unit sphere satisfying the mean zero property (1) and $Q_m(t)$ be a real polynomial on $\bR$ of degree $m$ satisfying $Q_m(0)=0$. We prove that the singular integral operator $$ T_{Q_m,b} (\,f) (x)=p.v. \int_\bR^n b(|y|) \Omega(\,y) |y|^{-n} f \left( x-Q_m (|y|) y' \right) \,dy $$ is bounded in $L^p (\bR^n)$ for $1
Keywords: singular integral, rough kernel, Hardy space singular integral, rough kernel, Hardy space
MSC Classifications: 42B20 show english descriptions Singular and oscillatory integrals (Calderon-Zygmund, etc.) 42B20 - Singular and oscillatory integrals (Calderon-Zygmund, etc.)
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/