Canadian Mathematical Society
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Abstract view

Coefficient multipliers of Bergman spaces $A^p$, II

 Printed: Dec 1997
  • Zengjian Lou
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  


We show that the multiplier space $(A^1,X)=\{g:M_\infty(r,g'') =O(1-r)^{-1}\}$, where $X$ is $\BMOA$, $\VMOA$, $B$, $B_0$ or disk algebra $A$. We give the multipliers from $A^1$ to $A^q(H^q)(1\le q\le \infty)$, we also give the multipliers from $l^p(1\le p\le 2), C_0, \BMOA$, and $H^p(2\le p<\infty)$ into $A^q(1\le q\le 2)$.
Keywords: Multiplier, Bergman space, Hardy space, Bloch space, $\BMOA$. Multiplier, Bergman space, Hardy space, Bloch space, $\BMOA$.
MSC Classifications: 30H05, 30B10 show english descriptions Bounded analytic functions
Power series (including lacunary series)
30H05 - Bounded analytic functions
30B10 - Power series (including lacunary series)

© Canadian Mathematical Society, 2014 :