Abstract view
Continuous Selfmaps of the Circle


Published:19970301
Printed: Mar 1997
Abstract
Given a continuous map $\delta$ from the circle $S$ to itself we
want to find all selfmaps $\sigma\colon S\to S$ for which
$\delta\circ\sigma = \delta$. If the degree $r$ of $\delta$ is not
zero, the transformations $\sigma$ form a subgroup of the cyclic
group $C_r$. If $r=0$, all such invertible transformations form a
group isomorphic either to a cyclic group $C_n$ or to a dihedral
group $D_n$ depending on whether all such transformations are
orientation preserving or not. Applied to the tangent image of
planar closed curves, this generalizes a result of Bisztriczky and
Rival [1]. The proof rests on the theorem: {\it Let
$\Delta\colon\bbd R\to\bbd R$ be continuous, nowhere constant, and
$\lim_{x\to \infty}\Delta(x)=\infty$, $ \lim_{x\to+\infty}\Delta
(x)=+\infty$; then the only continuous map $\Sigma\colon\bbd R\to\bbd
R$ such that $\Delta\circ\Sigma=\Delta$ is the identity
$\Sigma=\id_{\bbd R}$.