Canadian Mathematical Society
Canadian Mathematical Society
  location:  PublicationsjournalsCMB
Abstract view

On a Brownian motion problem of T. Salisbury

 Printed: Mar 1997
  • Frank B. Knight
Format:   HTML   LaTeX   MathJax   PDF   PostScript  


Let $B$ be a Brownian motion on $R$, $B(0)=0$, and let $f(t,x)$ be continuous. T.~Salisbury conjectured that if the total variation of $f(t,B(t))$, $0\leq t\leq 1$, is finite $P$-a.s., then $f$ does not depend on $x$. Here we prove that this is true if the expected total variation is finite.
MSC Classifications: 60J65 show english descriptions Brownian motion [See also 58J65] 60J65 - Brownian motion [See also 58J65]

© Canadian Mathematical Society, 2015 :