CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

Une propriété de domination convexe pour les orbites sturmiennes

  Published:2014-05-07
 Printed: Feb 2015
  • Thierry Bousch,
    Laboratoire de Mathématique (UMR 8628 du CNRS), bât. 425/430, Université de Paris-Sud, 91405 Orsay Cedex, France
Format:   LaTeX   MathJax   PDF  

Abstract

Let ${\bf x}=(x_0,x_1,\ldots)$ be a $N$-periodic sequence of integers ($N\ge1$), and ${\bf s}$ a sturmian sequence with the same barycenter (and also $N$-periodic, consequently). It is shown that, for affine functions $\alpha:\mathbb R^\mathbb N_{(N)}\to\mathbb R$ which are increasing relatively to some order $\le_2$ on $\mathbb R^\mathbb N_{(N)}$ (the space of all $N$-periodic sequences), the average of $|\alpha|$ on the orbit of ${\bf x}$ is greater than its average on the orbit of ${\bf s}$.
Keywords: suite sturmienne, domination convexe, optimisation ergodique suite sturmienne, domination convexe, optimisation ergodique
MSC Classifications: 37D35, 49N20, 90C27 show english descriptions Thermodynamic formalism, variational principles, equilibrium states
Periodic optimization
Combinatorial optimization
37D35 - Thermodynamic formalism, variational principles, equilibrium states
49N20 - Periodic optimization
90C27 - Combinatorial optimization
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/