Abstract view
A SkolemMahlerLech Theorem for Iterated Automorphisms of $K$algebras


Published:20140210
Printed: Apr 2015
Jason P. Bell,
Department of Pure Mathematics , University of Waterloo , Waterloo, ON , N2L 3G1
Jeffrey C. Lagarias,
Department of Mathematics , University of Michigan , Ann Arbor, MI 481091043 , USA
Abstract
This paper proves a commutative algebraic extension
of a generalized SkolemMahlerLech theorem due to the first
author.
Let $A$ be a finitely generated commutative $K$algebra
over a field of characteristic $0$, and let $\sigma$ be
a $K$algebra automorphism of $A$.
Given ideals $I$ and $J$ of $A$, we show that
the set $S$ of integers $m$ such that
$\sigma^m(I) \supseteq J$ is a finite union of
complete doubly infinite arithmetic progressions in $m$, up to
the addition of a finite set.
Alternatively, this result states that for an affine scheme
$X$ of finite type over $K$,
an automorphism $\sigma \in \operatorname{Aut}_K(X)$, and $Y$ and $Z$
any two closed subschemes of $X$, the set
of integers $m$ with $\sigma^m(Z ) \subseteq Y$ is as above.
The paper presents examples
showing that this result may fail to hold if the affine scheme
$X$ is
not of finite type, or if $X$ is of finite type but the field
$K$ has positive characteristic.