Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-19T02:01:23.738Z Has data issue: false hasContentIssue false

Expression d'un facteur epsilon de paire par une formule intégrale

Published online by Cambridge University Press:  20 November 2018

Raphaël Beuzart-Plessis*
Affiliation:
Institut de Mathématiques de Jussieu, 2 Place Jussieu, 75005 Paris, Francerbeuzart@math.jussieu.fr
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let $E/F$ be a quadratic extension of $p$-adic fields and let $d,\,m$ be nonnegative integers of distinct parities. Fix admissible irreducible tempered representations $\pi $ and $\sigma $ of $\text{G}{{\text{L}}_{d}}\left( E \right)$ and $\text{G}{{\text{L}}_{m}}\left( E \right)$ respectively. We assume that $\pi $ and $\sigma $ are conjugate-dual. That is to say $\pi \,\simeq \,{{\pi }^{\vee \text{,}\,c}}$ and $\sigma \,\simeq \,{{\sigma }^{\vee ,c}}$ where $c$ is the nontrivial $F$-automorphism of $E$. This implies that we can extend $\pi $ to an unitary representation $\tilde{\pi }$ of a nonconnected group $\text{G}{{\text{L}}_{d}}\left( E \right)\,\rtimes \,\left\{ 1,\,0 \right\}$. Define $\tilde{\sigma }$ the same way. We state and prove an integral formula for $\in \left( 1/2,\,\pi \,\times \,\sigma ,\,{{\psi }_{E}} \right)$ involving the characters of $\tilde{\pi }$ and $\tilde{\sigma }$. This formula is related to the local Gan–Gross–Prasad conjecture for unitary groups.

Type
Research Article
Copyright
Copyright © Canadian Mathematical Society 2014

References

Références

[AGRS] Aizenbud, A., Gourevitch, D., Rallis, S., et Schiffmann, G., Multiplicity one theorems. Ann. of Math. (2) 172(2010), 1407–1434.Google Scholar
[A1] Arthur, J., The trace formula in invariant form. Ann. of Math. 114(1981), 1–74.http://dx.doi.org/10.2307/1971376.Google Scholar
[A2] Arthur, J., Intertwining operators and residues I. Weighted characters. J. Funct. Analysis 84(1989), 19–84. http://dx.doi.org/10.1016/0022-1236(89)90110-9 Google Scholar
[B] Beuzart-Plessis, R., La conjecture locale de Gross–Prasad pour les représentations tempérées de groupes unitaires. Prépublication, 2012.Google Scholar
[C] Clozel, L., Characters of nonconnected, reductive p-adic groups. Canad. J. Math. 39(1987), 149–167. http://dx.doi.org/10.4153/CJM-1987-008-3 Google Scholar
[GGP] Gan, W. T., Gross, B., et Prasad, D.: Symplectic local root numbers, central critical L-values and restriction problems in the representation theory of classical groups. Astérisque 346(2012).Google Scholar
[JPSS] Jacquet, H., Piatetskii-Shapiro, I. I., et Shalika, J., Rankin–Selberg convolutions. Amer. J. Math. 105(1983), 367–464. http://dx.doi.org/10.2307/2374264 Google Scholar
[Ro] Rodier, F., Modèle de Whittaker et caractères de représentations. Dans: Non commutative harmonic analysis (´eds. J. Carmona, J. Dixmier, et M. Vergne), Springer Lecture Notes in Math. 466(1981), 151–171.Google Scholar
[Sh] Shahidi, F., On certain L-functions. Amer. J. Math. 103(1981), 297–355. http://dx.doi.org/10.2307/2374219 Google Scholar
[W1] Waldspurger, J.-L., Une formule intégrale relièe à la conjecture de Gross–Prasad. Compos. Math. 146(2010), 1180–1290. http://dx.doi.org/10.1112/S0010437X10004744 Google Scholar
[W2] Waldspurger, J.-L., Une formule intégrale relièe à la conjecture locale de Gross–Prasad, 2e partie: extension aux représentations tempérées. Astérisque 346(2012).Google Scholar
[W3] Waldspurger, J.-L., Calcul d'une valeur d'un facteur ∊ par une formule intégrale. Astérique 347(2012).Google Scholar
[W4] Waldspurger, J.-L., La formule des traces locale tordue. Prépublication, 2012.Google Scholar
[W5] Waldspurger, J.-L., La formule de Plancherel pour les groupes p-adiques, d'apr`es Harish-Chandra. J. Inst. Math. Jussieu 2(2003), 235–333. http://dx.doi.org/10.1017/S1474748003000082 Google Scholar