CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

On the Local Convexity of Intersection Bodies of Revolution

  • M. Angeles Alfonseca,
    Department of Mathematics, North Dakota State University, Fargo, ND 58018, USA
  • Jaegil Kim,
    Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   LaTeX   MathJax   PDF  

Abstract

One of the fundamental results in Convex Geometry is Busemann's theorem, which states that the intersection body of a symmetric convex body is convex. Thus, it is only natural to ask if there is a quantitative version of Busemann's theorem, i.e., if the intersection body operation actually improves convexity. In this paper we concentrate on the symmetric bodies of revolution to provide several results on the (strict) improvement of convexity under the intersection body operation. It is shown that the intersection body of a symmetric convex body of revolution has the same asymptotic behavior near the equator as the Euclidean ball. We apply this result to show that in sufficiently high dimension the double intersection body of a symmetric convex body of revolution is very close to an ellipsoid in the Banach-Mazur distance. We also prove results on the local convexity at the equator of intersection bodies in the class of star bodies of revolution.
Keywords: convex bodies, intersection bodies of star bodies, Busemann's theorem, local convexity convex bodies, intersection bodies of star bodies, Busemann's theorem, local convexity
MSC Classifications: 52A20, 52A38, 44A12 show english descriptions Convex sets in $n$ dimensions (including convex hypersurfaces) [See also 53A07, 53C45]
Length, area, volume [See also 26B15, 28A75, 49Q20]
Radon transform [See also 92C55]
52A20 - Convex sets in $n$ dimensions (including convex hypersurfaces) [See also 53A07, 53C45]
52A38 - Length, area, volume [See also 26B15, 28A75, 49Q20]
44A12 - Radon transform [See also 92C55]
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/