CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

Perturbation and Solvability of Initial $L^p$ Dirichlet Problems for Parabolic Equations over Non-cylindrical Domains

  Published:2013-12-23
 Printed: Apr 2014
  • Jorge Rivera-Noriega,
    Facultad de Ciencias, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col Chamilpa, Cuernavaca Mor CP 62209, México
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   LaTeX   MathJax   PDF  

Abstract

For parabolic linear operators $L$ of second order in divergence form, we prove that the solvability of initial $L^p$ Dirichlet problems for the whole range $1\lt p\lt \infty$ is preserved under appropriate small perturbations of the coefficients of the operators involved. We also prove that if the coefficients of $L$ satisfy a suitable controlled oscillation in the form of Carleson measure conditions, then for certain values of $p\gt 1$, the initial $L^p$ Dirichlet problem associated to $Lu=0$ over non-cylindrical domains is solvable. The results are adequate adaptations of the corresponding results for elliptic equations.
Keywords: initial $L^p$ Dirichlet problem, second order parabolic equations in divergence form, non-cylindrical domains, reverse Hölder inequalities initial $L^p$ Dirichlet problem, second order parabolic equations in divergence form, non-cylindrical domains, reverse Hölder inequalities
MSC Classifications: 35K20 show english descriptions Initial-boundary value problems for second-order parabolic equations 35K20 - Initial-boundary value problems for second-order parabolic equations
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/