CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

The Ranks of the Homotopy Groups of a Finite Dimensional Complex

  Published:2012-11-13
 Printed: Feb 2013
  • Yves Félix,
    Université Catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
  • Steve Halperin,
    University of Maryland, College Park, MD 20742-3281, USA
  • Jean-Claude Thomas,
    CNRS.UMR 6093-Université d'Angers, 49045 Bd Lavoisier, Angers, France
Format:   LaTeX   MathJax   PDF  

Abstract

Let $X$ be an $n$-dimensional, finite, simply connected CW complex and set $\alpha_X =\limsup_i \frac{\log\mbox{ rank}\, \pi_i(X)}{i}$. When $0\lt \alpha_X\lt \infty$, we give upper and lower bound for $ \sum_{i=k+2}^{k+n} \textrm{rank}\, \pi_i(X) $ for $k$ sufficiently large. We show also for any $r$ that $\alpha_X$ can be estimated from the integers rk$\,\pi_i(X)$, $i\leq nr$ with an error bound depending explicitly on $r$.
Keywords: homotopy groups, graded Lie algebra, exponential growth, LS category homotopy groups, graded Lie algebra, exponential growth, LS category
MSC Classifications: 55P35, 55P62, 17B70 show english descriptions Loop spaces
Rational homotopy theory
Graded Lie (super)algebras
55P35 - Loop spaces
55P62 - Rational homotopy theory
17B70 - Graded Lie (super)algebras
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/