Canadian Mathematical Society
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

The Geometry and Fundamental Group of Permutation Products and Fat Diagonals

 Printed: Jun 2013
  • Sadok Kallel,
    Laboratoire Painlevé, Université des Sciences et Technologies de Lille, France
  • Walid Taamallah,
    Faculté des Sciences de Tunis
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   LaTeX   MathJax   PDF  


Permutation products and their various ``fat diagonal'' subspaces are studied from the topological and geometric point of view. We describe in detail the stabilizer and orbit stratifications related to the permutation action, producing a sharp upper bound for its depth and then paying particular attention to the geometry of the diagonal stratum. We write down an expression for the fundamental group of any permutation product of a connected space $X$ having the homotopy type of a CW complex in terms of $\pi_1(X)$ and $H_1(X;\mathbb{Z})$. We then prove that the fundamental group of the configuration space of $n$-points on $X$, of which multiplicities do not exceed $n/2$, coincides with $H_1(X;\mathbb{Z})$. Further results consist in giving conditions for when fat diagonal subspaces of manifolds can be manifolds again. Various examples and homological calculations are included.
Keywords: symmetric products, fundamental group, orbit stratification symmetric products, fundamental group, orbit stratification
MSC Classifications: 14F35, 57F80 show english descriptions Homotopy theory; fundamental groups [See also 14H30]
unknown classification 57F80
14F35 - Homotopy theory; fundamental groups [See also 14H30]
57F80 - unknown classification 57F80

© Canadian Mathematical Society, 2014 :