CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

Extreme Version of Projectivity for Normed Modules Over Sequence Algebras

  Published:2012-05-17
 Printed: Jun 2013
  • A. Ya. Helemskii,
    Faculty of Mechanics and Mathematics, Moscow State University, Moscow 119992 Russia
Format:   LaTeX   MathJax   PDF  

Abstract

We define and study the so-called extreme version of the notion of a projective normed module. The relevant definition takes into account the exact value of the norm of the module in question, in contrast with the standard known definition that is formulated in terms of norm topology. After the discussion of the case where our normed algebra $A$ is just $\mathbb{C}$, we concentrate on the case of the next degree of complication, where $A$ is a sequence algebra, satisfying some natural conditions. The main results give a full characterization of extremely projective objects within the subcategory of the category of non-degenerate normed $A$--modules, consisting of the so-called homogeneous modules. We consider two cases, `non-complete' and `complete', and the respective answers turn out to be essentially different. In particular, all Banach non-degenerate homogeneous modules, consisting of sequences, are extremely projective within the category of Banach non-degenerate homogeneous modules. However, neither of them, provided it is infinite-dimensional, is extremely projective within the category of all normed non-degenerate homogeneous modules. On the other hand, submodules of these modules, consisting of finite sequences, are extremely projective within the latter category.
Keywords: extremely projective module, sequence algebra, homogeneous module extremely projective module, sequence algebra, homogeneous module
MSC Classifications: 46H25 show english descriptions Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX) 46H25 - Normed modules and Banach modules, topological modules (if not placed in 13-XX or 16-XX)
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/