CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

On Cardinal Invariants and Generators for von Neumann Algebras

  Published:2011-07-15
 Printed: Apr 2012
  • David Sherman,
    Department of Mathematics, University of Virginia, P.O. Box 400137, Charlottesville, VA 22904, USA
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   LaTeX   MathJax   PDF  

Abstract

We demonstrate how most common cardinal invariants associated with a von Neumann algebra $\mathcal M$ can be computed from the decomposability number, $\operatorname{dens}(\mathcal M)$, and the minimal cardinality of a generating set, $\operatorname{gen}(\mathcal M)$. Applications include the equivalence of the well-known generator problem, ``Is every separably-acting von Neumann algebra singly-generated?", with the formally stronger questions, ``Is every countably-generated von Neumann algebra singly-generated?" and ``Is the $\operatorname{gen}$ invariant monotone?" Modulo the generator problem, we determine the range of the invariant $\bigl( \operatorname{gen}(\mathcal M), \operatorname{dens}(\mathcal M) \bigr)$, which is mostly governed by the inequality $\operatorname{dens}(\mathcal M) \leq \mathfrak C^{\operatorname{gen}(\mathcal M)}$.
Keywords: von Neumann algebra, cardinal invariant, generator problem, decomposability number, representation density von Neumann algebra, cardinal invariant, generator problem, decomposability number, representation density
MSC Classifications: 46L10 show english descriptions General theory of von Neumann algebras 46L10 - General theory of von Neumann algebras
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/