CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

On Higher Moments of Fourier Coefficients of Holomorphic Cusp Forms

  Published:2011-02-25
 Printed: Jun 2011
  • Guangshi Lü,
    Department of Mathematics, Shandong University, Jinan Shandong, 250100, China
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF  

Abstract

Let $S_{k}(\Gamma)$ be the space of holomorphic cusp forms of even integral weight $k$ for the full modular group. Let $\lambda_f(n)$ and $\lambda_g(n)$ be the $n$-th normalized Fourier coefficients of two holomorphic Hecke eigencuspforms $f(z), g(z) \in S_{k}(\Gamma)$, respectively. In this paper we are able to show the following results about higher moments of Fourier coefficients of holomorphic cusp forms.\newline (i) For any $\varepsilon>0$, we have \begin{equation*} \sum_{n\leq x}\lambda_f^5(n) \ll_{f,\varepsilon}x^{\frac{15}{16}+\varepsilon} \quad\text{and}\quad\sum_{n\leq x}\lambda_f^7(n) \ll_{f,\varepsilon}x^{\frac{63}{64}+\varepsilon}. \end{equation*} (ii) If $\operatorname{sym}^3\pi_f \ncong \operatorname{sym}^3\pi_g$, then for any $\varepsilon>0$, we have \begin{equation*} \sum_{n \leq x}\lambda_f^3(n)\lambda_g^3(n)\ll_{f,\varepsilon}x^{\frac{31}{32}+\varepsilon}; \end{equation*} If $\operatorname{sym}^2\pi_f \ncong \operatorname{sym}^2\pi_g$, then for any $\varepsilon>0$, we have \[ \sum_{n \leq x}\lambda_f^4(n)\lambda_g^2(n)=cx\log x+c'x+O_{f,\varepsilon}\bigl(x^{\frac{31}{32}+\varepsilon}\bigr); \] If $\operatorname{sym}^2\pi_f \ncong \operatorname{sym}^2\pi_g$ and $\operatorname{sym}^4\pi_f \ncong \operatorname{sym}^4\pi_g$, then for any $\varepsilon>0$, we have \[ \sum_{n \leq x}\lambda_f^4(n)\lambda_g^4(n)=xP(\log x)+O_{f,\varepsilon}\bigl(x^{\frac{127}{128}+\varepsilon}\bigr), \] where $P(x)$ is a polynomial of degree $3$.
Keywords: Fourier coefficients of cusp forms, symmetric power $L$-function Fourier coefficients of cusp forms, symmetric power $L$-function
MSC Classifications: 11F30, 11F11, 11F66 show english descriptions Fourier coefficients of automorphic forms
Holomorphic modular forms of integral weight
Langlands $L$-functions; one variable Dirichlet series and functional equations
11F30 - Fourier coefficients of automorphic forms
11F11 - Holomorphic modular forms of integral weight
11F66 - Langlands $L$-functions; one variable Dirichlet series and functional equations
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/