Abstract view
Reducibility of the Principal Series for Sp^{~}_{2}(F) over a padic Field


Published:20100520
Printed: Aug 2010
Christian Zorn,
Mathematics Department, The Ohio State University, Columbus, OH, USA
Features coming soon:
Citations
(via CrossRef)
Tools:
Search Google Scholar:
Abstract
Let $G_n=\mathrm{Sp}_n(F)$ be the rank $n$ symplectic group with
entries in a nondyadic $p$adic field $F$. We further let $\widetilde{G}_n$ be
the metaplectic extension of $G_n$ by $\mathbb{C}^{1}=\{z\in\mathbb{C}^{\times}
\mid z=1\}$ defined using the Leray cocycle. In this paper, we aim to
demonstrate the complete list of reducibility points of the genuine
principal series of ${\widetilde{G}_2}$. In most cases, we will use
some techniques developed by Tadić that analyze the Jacquet
modules with respect to all of the parabolics containing a fixed
Borel. The exceptional cases involve representations induced from
unitary characters $\chi$ with $\chi^2=1$. Because such
representations $\pi$ are unitary, to show the irreducibility of
$\pi$, it suffices to show that
$\dim_{\mathbb{C}}\mathrm{Hom}_{{\widetilde{G}}}(\pi,\pi)=1$. We will accomplish this
by examining the poles of certain intertwining operators associated to
simple roots. Then some results of Shahidi and Ban decompose arbitrary
intertwining operators into a composition of operators corresponding
to the simple roots of ${\widetilde{G}_2}$. We will then be able to
show that all such operators have poles at principal series
representations induced from quadratic characters and therefore such
operators do not extend to operators in
$\mathrm{Hom}_{{\widetilde{G}_2}}(\pi,\pi)$ for the $\pi$ in question.