CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

General Preservers of Quasi-Commutativity

  Published:2010-05-20
 Printed: Aug 2010
  • Gregor Dolinar,
    Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
  • Bojan Kuzma,
    Institute of Mathematics, Physics, and Mechanics, Ljubljana, Slovenia
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF  

Abstract

Let ${ M}_n$ be the algebra of all $n \times n$ matrices over $\mathbb{C}$. We say that $A, B \in { M}_n$ quasi-commute if there exists a nonzero $\xi \in \mathbb{C}$ such that $AB = \xi BA$. In the paper we classify bijective not necessarily linear maps $\Phi \colon M_n \to M_n$ which preserve quasi-commutativity in both directions.
Keywords: general preservers, matrix algebra, quasi-commutativity general preservers, matrix algebra, quasi-commutativity
MSC Classifications: 15A04, 15A27, 06A99 show english descriptions Linear transformations, semilinear transformations
Commutativity
None of the above, but in this section
15A04 - Linear transformations, semilinear transformations
15A27 - Commutativity
06A99 - None of the above, but in this section
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/