CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

The General Definition of the Complex Monge--Ampère Operator on Compact Kähler Manifolds

  Published:2009-12-04
 Printed: Feb 2010
  • Yang Xing,
    Lund University, Sweden
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

We introduce a wide subclass ${\mathcal F}(X,\omega)$ of quasi-plurisubharmonic functions in a compact Kähler manifold, on which the complex Monge-Ampère operator is well defined and the convergence theorem is valid. We also prove that ${\mathcal F}(X,\omega)$ is a convex cone and includes all quasi-plurisubharmonic functions that are in the Cegrell class.
Keywords: complex Monge--Ampère operator, compact Kähler manifold complex Monge--Ampère operator, compact Kähler manifold
MSC Classifications: 32W20, 32Q15 show english descriptions Complex Monge-Ampere operators
Kahler manifolds
32W20 - Complex Monge-Ampere operators
32Q15 - Kahler manifolds
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/