Abstract view
Multiplication of Polynomials on Hermitian Symmetric spaces and LittlewoodRichardson Coefficients


Published:20090401
Printed: Apr 2009
William Graham
Markus Hunziker
Abstract
Let $K$ be a complex reductive algebraic group and $V$ a
representation of $K$. Let $S$ denote the ring of polynomials on
$V$. Assume that the action of $K$ on $S$ is multiplicityfree. If
$\lambda$ denotes the isomorphism class of an irreducible
representation of $K$, let $\rho_\lambda\from K \rightarrow
GL(V_{\lambda})$ denote the corresponding irreducible representation
and $S_\lambda$ the $\lambda$isotypic component of $S$. Write
$S_\lambda \cdot S_\mu$ for the subspace of $S$ spanned by products of
$S_\lambda$ and $S_\mu$. If $V_\nu$ occurs as an irreducible
constituent of $V_\lambda\otimes V_\mu$, is it true that
$S_\nu\subseteq S_\lambda\cdot S_\mu$? In this paper, the authors
investigate this question for representations arising in the context
of Hermitian symmetric pairs. It is shown that the answer is yes in
some cases and, using an earlier result of Ruitenburg, that in the
remaining classical cases, the answer is yes provided that a
conjecture of Stanley on the multiplication of Jack polynomials is
true. It is also shown how the conjecture connects multiplication in
the ring $S$ to the usual LittlewoodRichardson rule.