CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

The Ample Cone of the Kontsevich Moduli Space

  Published:2009-02-01
 Printed: Feb 2009
  • Izzet Coskun
  • Joe Harris
  • Jason Starr
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

We produce ample (resp.\ NEF, eventually free) divisors in the Kontsevich space $\Kgnb{0,n} (\mathbb P^r, d)$ of $n$-pointed, genus $0$, stable maps to $\mathbb P^r$, given such divisors in $\Kgnb{0,n+d}$. We prove that this produces all ample (resp.\ NEF, eventually free) divisors in $\Kgnb{0,n}(\mathbb P^r,d)$. As a consequence, we construct a contraction of the boundary $\bigcup_{k=1}^{\lfloor d/2 \rfloor} \Delta_{k,d-k}$ in $\Kgnb{0,0}(\mathbb P^r,d)$, analogous to a contraction of the boundary $\bigcup_{k=3}^{\lfloor n/2 \rfloor} \tilde{\Delta}_{k,n-k}$ in $\kgnb{0,n}$ first constructed by Keel and McKernan.
MSC Classifications: 14D20, 14E99, 14H10 show english descriptions Algebraic moduli problems, moduli of vector bundles {For analytic moduli problems, see 32G13}
None of the above, but in this section
Families, moduli (algebraic)
14D20 - Algebraic moduli problems, moduli of vector bundles {For analytic moduli problems, see 32G13}
14E99 - None of the above, but in this section
14H10 - Families, moduli (algebraic)
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/