CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

$H^p$-Maximal Regularity and Operator Valued Multipliers on Hardy Spaces

  Published:2007-12-01
 Printed: Dec 2007
  • Shangquan Bu
  • Christian Le Merdy
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

We consider maximal regularity in the $H^p$ sense for the Cauchy problem $u'(t) + Au(t) = f(t)\ (t\in \R)$, where $A$ is a closed operator on a Banach space $X$ and $f$ is an $X$-valued function defined on $\R$. We prove that if $X$ is an AUMD Banach space, then $A$ satisfies $H^p$-maximal regularity if and only if $A$ is Rademacher sectorial of type $<\frac{\pi}{2}$. Moreover we find an operator $A$ with $H^p$-maximal regularity that does not have the classical $L^p$-maximal regularity. We prove a related Mikhlin type theorem for operator valued Fourier multipliers on Hardy spaces $H^p(\R;X)$, in the case when $X$ is an AUMD Banach space.
Keywords: $L^p$-maximal regularity, $H^p$-maximal regularity, Rademacher boundedness $L^p$-maximal regularity, $H^p$-maximal regularity, Rademacher boundedness
MSC Classifications: 42B30, 47D06 show english descriptions $H^p$-spaces
One-parameter semigroups and linear evolution equations [See also 34G10, 34K30]
42B30 - $H^p$-spaces
47D06 - One-parameter semigroups and linear evolution equations [See also 34G10, 34K30]
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/