Abstract view
The Square Sieve and the LangTrotter Conjecture


Published:20051201
Printed: Dec 2005
Alina Carmen Cojocaru
Etienne Fouvry
M. Ram Murty
Features coming soon:
Citations
(via CrossRef)
Tools:
Search Google Scholar:
Abstract
Let $E$ be an elliptic curve defined over $\Q$ and without
complex multiplication. Let $K$ be a fixed imaginary quadratic field.
We find nontrivial upper bounds for the number of ordinary primes $p \leq x$
for which $\Q(\pi_p) = K$, where $\pi_p$ denotes the Frobenius endomorphism
of $E$ at $p$. More precisely, under a generalized Riemann hypothesis
we show that this number is $O_{E}(x^{\slfrac{17}{18}}\log x)$, and unconditionally
we show that this number is $O_{E, K}\bigl(\frac{x(\log \log x)^{\slfrac{13}{12}}}
{(\log x)^{\slfrac{25}{24}}}\bigr)$. We also prove that the number of imaginary quadratic
fields $K$, with $\disc K \leq x$ and of the form $K = \Q(\pi_p)$, is
$\gg_E\log\log\log x$ for $x\geq x_0(E)$. These results represent progress towards
a 1976 LangTrotter conjecture.