CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

Fubini's Theorem for Ultraproducts \\of Noncommutative $L_p$-Spaces

  Published:2004-10-01
 Printed: Oct 2004
  • Marius Junge
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

Let $(\M_i)_{i\in I}$, $(\N_j)_{j\in J}$ be families of von Neumann algebras and $\U$, $\U'$ be ultrafilters in $I$, $J$, respectively. Let $1\le p<\infty$ and $\nen$. Let $x_1$,\dots,$x_n$ in $\prod L_p(\M_i)$ and $y_1$,\dots,$y_n$ in $\prod L_p(\N_j)$ be bounded families. We show the following equality $$ \lim_{i,\U} \lim_{j,\U'} \Big\| \summ_{k=1}^n x_k(i)\otimes y_k(j)\Big\|_{L_p(\M_i\otimes \N_j)} = \lim_{j,\U'} \lim_{i,\U} \Big\| \summ_{k=1}^n x_k(i)\otimes y_k(j)\Big\|_{L_p(\M_i\otimes \N_j)} . $$ For $p=1$ this Fubini type result is related to the local reflexivity of duals of $C^*$-algebras. This fails for $p=\infty$.
Keywords: noncommutative $L_p$-spaces, ultraproducts noncommutative $L_p$-spaces, ultraproducts
MSC Classifications: 46L52, 46B08, 46L07 show english descriptions Noncommutative function spaces
Ultraproduct techniques in Banach space theory [See also 46M07]
Operator spaces and completely bounded maps [See also 47L25]
46L52 - Noncommutative function spaces
46B08 - Ultraproduct techniques in Banach space theory [See also 46M07]
46L07 - Operator spaces and completely bounded maps [See also 47L25]
 

© Canadian Mathematical Society, 2014 : https://cms.math.ca/