CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

Asymptotics for Minimal Discrete Riesz Energy on Curves in $\R^d$

  Published:2004-06-01
 Printed: Jun 2004
  • A. Martínez-Finkelshtein
  • V. Maymeskul
  • E. A. Rakhmanov
  • E. B. Saff
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

We consider the $s$-energy $$ E(\ZZ_n;s)=\sum_{i \neq j} K(\|z_{i,n}-z_{j,n}\|;s) $$ for point sets $\ZZ_n=\{ z_{k,n}:k=0,\dots,n\}$ on certain compact sets $\Ga$ in $\R^d$ having finite one-dimensional Hausdorff measure, where $$ K(t;s)= \begin{cases} t^{-s} ,& \mbox{if } s>0, \\ -\ln t, & \mbox{if } s=0, \end{cases} $$ is the Riesz kernel. Asymptotics for the minimum $s$-energy and the distribution of minimizing sequences of points is studied. In particular, we prove that, for $s\geq 1$, the minimizing nodes for a rectifiable Jordan curve $\Ga$ distribute asymptotically uniformly with respect to arclength as $n\to\infty$.
Keywords: Riesz energy, Minimal discrete energy, Rectifiable curves, Best-packing on curves Riesz energy, Minimal discrete energy, Rectifiable curves, Best-packing on curves
MSC Classifications: 52A40, 31C20 show english descriptions Inequalities and extremum problems
Discrete potential theory and numerical methods
52A40 - Inequalities and extremum problems
31C20 - Discrete potential theory and numerical methods
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/