Abstract view
Admissible Majorants for Model Subspaces of $H^2$, Part I: Slow Winding of the Generating Inner Function


Published:20031201
Printed: Dec 2003
Victor Havin
Javad Mashreghi
Abstract
A model subspace $K_\Theta$ of the Hardy space $H^2 = H^2
(\mathbb{C}_+)$ for the upper half plane $\mathbb{C}_+$ is
$H^2(\mathbb{C}_+) \ominus \Theta H^2(\mathbb{C}_+)$ where $\Theta$
is an inner function in $\mathbb{C}_+$. A function $\omega \colon
\mathbb{R}\mapsto[0,\infty)$ is called an admissible
majorant for $K_\Theta$ if there exists an $f \in K_\Theta$, $f
\not\equiv 0$, $f(x)\leq \omega(x)$ almost everywhere on
$\mathbb{R}$. For some (mainly meromorphic) $\Theta$'s some parts
of Adm $\Theta$ (the set of all admissible majorants for
$K_\Theta$) are explicitly described. These descriptions depend on
the rate of growth of $\arg \Theta$ along $\mathbb{R}$. This paper
is about slowly growing arguments (slower than $x$). Our results
exhibit the dependence of Adm $B$ on the geometry of the zeros of
the Blaschke product $B$. A complete description of Adm $B$ is
obtained for $B$'s with purely imaginary (``vertical'') zeros. We
show that in this case a unique minimal admissible majorant exists.
Keywords: 
Hardy space, inner function, shift operator, model, subspace, Hilbert transform, admissible majorant
Hardy space, inner function, shift operator, model, subspace, Hilbert transform, admissible majorant
