CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

Norms of Complex Harmonic Projection Operators

  Published:2003-12-01
 Printed: Dec 2003
  • Valentina Casarino
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

In this paper we estimate the $(L^p-L^2)$-norm of the complex harmonic projectors $\pi_{\ell\ell'}$, $1\le p\le 2$, uniformly with respect to the indexes $\ell,\ell'$. We provide sharp estimates both for the projectors $\pi_{\ell\ell'}$, when $\ell,\ell'$ belong to a proper angular sector in $\mathbb{N} \times \mathbb{N}$, and for the projectors $\pi_{\ell 0}$ and $\pi_{0 \ell}$. The proof is based on an extension of a complex interpolation argument by C.~Sogge. In the appendix, we prove in a direct way the uniform boundedness of a particular zonal kernel in the $L^1$ norm on the unit sphere of $\mathbb{R}^{2n}$.
MSC Classifications: 43A85, 33C55, 42B15 show english descriptions Analysis on homogeneous spaces
Spherical harmonics
Multipliers
43A85 - Analysis on homogeneous spaces
33C55 - Spherical harmonics
42B15 - Multipliers
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/