Abstract view
Octahedral Galois Representations Arising From $\mathbf{Q}$Curves of Degree $2$


Published:20021201
Printed: Dec 2002
J. Fernández
JC. Lario
A. Rio
Abstract
Generically, one can attach to a $\mathbf{Q}$curve $C$ octahedral representations
$\rho\colon\Gal(\bar{\mathbf{Q}}/\mathbf{Q})\rightarrow\GL_2(\bar\mathbf{F}_3)$
coming from the Galois action on the $3$torsion of those abelian varieties of
$\GL_2$type whose building block is $C$. When $C$ is defined over a quadratic
field and has an isogeny of degree $2$ to its Galois conjugate, there exist
such representations $\rho$ having image into $\GL_2(\mathbf{F}_9)$. Going
the other way, we can ask which $\mod 3$ octahedral representations $\rho$ of
$\Gal(\bar\mathbf{Q}/\mathbf{Q})$ arise from $\mathbf{Q}$curves in the above
sense. We characterize those arising from quadratic $\mathbf{Q}$curves of
degree $2$. The approach makes use of Galois embedding techniques in
$\GL_2(\mathbf{F}_9)$, and the characterization can be given in terms of a
quartic polynomial defining the $\mathcal{S}_4$extension of $\mathbf{Q}$
corresponding to the projective representation $\bar{\rho}$.