CMS/SMC
Canadian Mathematical Society
www.cms.math.ca
Canadian Mathematical Society
  location:  PublicationsjournalsCJM
Abstract view

Ranks of Algebras of Continuous $C^*$-Algebra Valued Functions

  Published:2001-10-01
 Printed: Oct 2001
  • Masaru Nagisa
  • Hiroyuki Osaka
  • N. Christopher Phillips
Features coming soon:
Citations   (via CrossRef) Tools: Search Google Scholar:
Format:   HTML   LaTeX   MathJax   PDF   PostScript  

Abstract

We prove a number of results about the stable and particularly the real ranks of tensor products of \ca s under the assumption that one of the factors is commutative. In particular, we prove the following: {\raggedright \begin{enumerate}[(5)] \item[(1)] If $X$ is any locally compact $\sm$-compact Hausdorff space and $A$ is any \ca, then\break $\RR \bigl( C_0 (X) \otimes A \bigr) \leq \dim (X) + \RR(A)$. \item[(2)] If $X$ is any locally compact Hausdorff space and $A$ is any \pisca, then $\RR \bigl( C_0 (X) \otimes A \bigr) \leq 1$. \item[(3)] $\RR \bigl( C ([0,1]) \otimes A \bigr) \geq 1$ for any nonzero \ca\ $A$, and $\sr \bigl( C ([0,1]^2) \otimes A \bigr) \geq 2$ for any unital \ca\ $A$. \item[(4)] If $A$ is a unital \ca\ such that $\RR(A) = 0$, $\sr (A) = 1$, and $K_1 (A) = 0$, then\break $\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$. \item[(5)] There is a simple separable unital nuclear \ca\ $A$ such that $\RR(A) = 1$ and\break $\sr \bigl( C ([0,1]) \otimes A \bigr) = 1$. \end{enumerate}}
MSC Classifications: 46L05, 46L52, 46L80, 19A13, 19B10 show english descriptions General theory of $C^*$-algebras
Noncommutative function spaces
$K$-theory and operator algebras (including cyclic theory) [See also 18F25, 19Kxx, 46M20, 55Rxx, 58J22]
Stability for projective modules [See also 13C10]
Stable range conditions
46L05 - General theory of $C^*$-algebras
46L52 - Noncommutative function spaces
46L80 - $K$-theory and operator algebras (including cyclic theory) [See also 18F25, 19Kxx, 46M20, 55Rxx, 58J22]
19A13 - Stability for projective modules [See also 13C10]
19B10 - Stable range conditions
 

© Canadian Mathematical Society, 2014 : http://www.cms.math.ca/